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Abstract
We study the phase transitions and dynamic behavior of the dynamic model
of neural networks, with an emphasis on the effects of neuronal loss due to
external stress. In the absence of loss the overall results obtained numerically
are found to agree excellently with the theoretical ones. When the external
stress is turned on, some neurons may deteriorate and die; such loss of neurons,
in general, weakens the memory in the system. As the loss increases beyond a
critical value, the order parameter measuring the strength of memory decreases
to zero either continuously or discontinuously, namely, the system loses its
memory via a second- or a first-order transition, depending on the ratio of the
refractory period to the duration of action potential.

PACS numbers: 87.19.lj, 05.10.Gg, 87.18.Sn, 87.19.xr

1. Introduction

Statistical mechanics has contributed much to the understanding of such features as memory,
learning, fault tolerance, information storage and its retrieval in terms of collective behaviors
of neurons [1–6]. In theoretical approaches, the brain is usually modeled as an ideal network
of neurons which are all intact. In the real world, however, a living organism in general suffers
from external stress, which may lead the organism into failure. In particular, neurons may
deteriorate and die due to stress, which may increase the stress on other neurons, and thus
induce death of other neurons. Effects of such loss of neurons may be considered through the
use of the dynamic failure model for living organisms, proposed recently for a general system
of cells [7]. The model has turned out to display characteristic time evolution, reminiscent of
the time progression of degenerative diseases: it tends to resist stress for rather a long time,
followed by sudden failure with some fraction of cells possibly surviving.
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To describe appropriately the deterioration behavior of a neural network associated with
neuronal loss, we need to consider a neural network model with realistic dynamics. Most
models usually assume that the dynamics is either totally synchronous or totally asynchronous;
this assumption is not realistic in neural networks, in view of the presence of several time
scales such as the refractory period, time duration of the action potential and the retardation
of signal propagation. On the other hand, the dynamic model for neural networks, proposed
by one of the authors, uses a continuous time scale, taking explicitly into account several time
scales described above [8]. The dynamic model has been successfully applied to a simple case
with a Hebb-type rule [9], presenting the desirable features similar to those in the conventional
models. It is thus natural to employ the dynamic model for neural networks, incorporated with
the dynamic failure model that reflects the effects of neuronal loss.

In this work, we study the phase transitions and dynamic behavior of the dynamic model
of neural networks, incorporated with the dynamic failure model. In the absence of loss,
the overall results obtained numerically are in excellent agreement with the theoretical ones.
The loss of neurons due to external stress is then shown to weaken the memory present in
the system. As the loss increases beyond a critical value, the order parameter measuring the
strength of memory decreases to zero either continuously or discontinuously, namely, the
system loses the memory via a first- or a second-order transition, depending on the refractory
period.

This paper consists of five sections. In section 2, we introduce the dynamic model for
neural networks with neuronal loss. Section 3 considers the system in the absence of external
stress, and presents the numerical results in comparison with the theoretical ones. The effects
of neuronal loss due to external stress are examined in section 4. Finally, a summary is given
in section 5.

2. Dynamic model

We consider a network of N neurons, the j th of which is described by the Ising spin σj = ±1
(firing/quiescent). The system is also under external stress characterized by load Nf . Each
neuron has its own tolerance and endures the stress below the tolerance, remaining alive. The
ith neuron may become dead, however, if the tolerance hi is exceeded. We assign ‘living’
status variables to these in such a way that τi = ∓1 for the ith neuron alive/dead. The
state of the network may then be described by the configuration of all the neurons, i.e.,
σ ≡ (σ1, σ2, . . . , σN) and τ ≡ (τ1, τ2, . . . , τN). The neurons are interconnected by synaptic
junctions of strength 2Jij (with Jii ≡ 0). The threshold behavior of the ith neuron, namely,
whether the neuron fires or not depending on the magnitude of the stimulus, at time t is
described by the probability that depends on the difference between the total potential on the
ith neuron, Vi , and its threshold value, V0:

Vi − V0 = 1

2

∑
j

Jij σ
′
j (1 − τ ′

j ) ≡ E′
i , (1)

where it has been assumed as usual that V0 = ∑
j Jij . In equation (1), σ ′

j and τ ′
j denote the

state of the j th neuron and its living status at time t − td , respectively, with td being the delay
in interactions including the synaptic delay.

We begin with the conditional probability pσ (σ ′
i , t + δt |σi, t; σ′, t − td) that ith neuron

is in state σ ′
i at time t + δt given that it is in state σi at time t. Since only the neuron in

the ‘living’ state contribute, the conditional probability pσ (σ ′
i , t + δt |σi, t; σ′, t − td), in the
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limit δt → 0, can be expressed in terms of the transition rate [8]:

pσ (σ ′′
i , t + δt |σi, t; σ′, t − td) =

{
wσ

i (σi; σ′, t − td)δt for σ ′′
i = −σi

1 − wσ
i (σi; σ′, t − td)δt for σ ′′

i = σi,
(2)

where the transition rate is given by

wσ
i (σi; σ′, t − td) = 1 − τi

4tr

[(
a +

1

2

)
+

(
a − 1

2

)
σi +

1 − σi

2
tanh βE′

i

]
, (3)

with a ≡ tr/t0 being the ratio of the refractory period to the action potential duration and the
inverse ‘temperature’ β ≡ 1/T measuring the width of the threshold region or the synaptic
noise level. In the above equations, σ′ ≡ (σ ′

1, σ
′
2, . . . , σ

′
N) represents the configuration of the

system at time t − td , and the dependence of the conditional probabilities on σ′ is implicit,
through E′

i . Here we point out that td , tr , t0 and accordingly a may be complicated functions
of system properties like the average activity and others, which may be incorporated into the
model. In this work, we restrict ourselves to the simplest case of these parameters being fixed.

Similarly, the failure dynamics of the network is described by the conditional probability
pτ (τi = 1, t + δt |τi = −1, t; τ ′, t − tD) that the ith neuron becomes dead at time t + δt given
that it is alive at time t [7]. In the limit δt → 0, this can be expressed in terms of the transition
rate:

pτ (τ ′′
i , t + δt |τi, t; τ ′, t − tD) =

{
wτ

i (τi; τ ′, t − tD)δt for τ ′′
i = −τi

1 − wτ
i (τi; τ ′, t − tD)δt for τ ′′

i = τi,
(4)

with the transition rate

wτ
i (τi; τ ′, t − tD) = 1 − τi

4tR
[1 + tanh γH ′

i ], (5)

where we have assumed that neurons, once they fail, do not regenerate. In equation
(4), τ ′ ≡ (τ ′

1, τ
′
2, . . . , τ

′
N) represents the configuration of the system at time t − tD and

H ′
i ≡ f − (hi/2)(1 − τ̄ ′) (with τ̄ ′ ≡ N−1 ∑

i τ
′
i ). We have two time scales tD and tR: tD

denotes the time delay for the stress redistribution while tR sets the relaxation time of the
failure dynamics. γ −1 measures the possible uncertainty (noise level) in the neuron tolerance.

The behavior of the neural network is then governed by the master equation, which
describes the evolution of the joint probability P(τ , σ, t; τ ′, t − tD, σ′, t − td) that the system
is in state τ ′ at time t − tD , in state σ′ at time t − td , and in state τ , σ at time t. One may
follow essentially the same procedure as that in [7, 8] to derive the time evolution equation
for P(τ , σ, t; τ ′, t − tD, σ′, t − td):

d

dt
P (τ , σ, t; τ ′, t − tD, σ′, t − td) = −

∑
i

[
wτ

i (τi; τ ′)P (τ , σ, t; τ ′, t − tD, σ′, t − td)

−wτ
i (−τi; τ ′)P (Fiτ , σ, t; τ ′, t − tD, σ′, t − td)

+ wσ
i (σi; σ′)P (τ , σ, t; τ ′, t − tD, σ′, t − td)

−wσ
i (−σi; σ′)P (τ , Fiσ, t; τ ′, t − tD, σ′, t − td)

]
, (6)

where we have used the abbreviations wτ
i (τi; τ ′) ≡ wτ

i (τi; τ ′, t − tD) with Fiτ ≡ (τ1, . . . ,

τi−1,−τi, τi+1, . . . , τN), and wσ
i (σi; σ′) ≡ wσ

i (−σi; σ′, t − td) with Fiσ ≡ (σ1, . . . , σi−1,

−σi, σi+1, . . . , σN).
Then equations describing the time evolution of relevant physical quantities, in general,

assume the form of retarded differential equations. For instance, the ‘living’ status variable,

3
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mk(t) ≡ 〈τk〉t = ∑
τ ,τ ′

∑
σ,σ′ τkP (τ , σ, t; τ ′, t − tD, σ′, t − td) may be obtained from

equation (6), by multiplying τk and summing over all configurations:

d

dt
mk = −

∑
τ ,τ ′

∑
σ,σ′

τk

[
wτ

k (τk; τ ′)P (τ , σ, t; τ ′, t − tD, σ′, t − td)

−wτ
k (−τk; τ ′)P (Fkτ , σ, t; τ ′, t − tD, σ′, t − td)

+ wσ
k (σk; σ′)P (τ , σ, t; τ ′, t − tD, σ′, t − td)

−wσ
k (−σk; σ′)P (τ , Fkσ, t; τ ′, t − tD, σ′, t − td)

]
= −2

〈
τkw

τ
k (τk; τ )

〉
t
, (7)

where it has been utilized that∑
τ ,τ ′

∑
σ,σ′

[
wσ

k (σk; σ′)P (τ , σ, t; τ ′, t − tD, σ′, t − td)

−wσ
k (−σk; σ′)P (τ , Fkσ, t; τ ′, t − tD, σ′, t − td)

] = 0. (8)

Evaluation of the average 〈τkw
τ
k (τk; τ )〉t leads to

d

dt
mk(t) = 1

tR

[
1 − mk

2
+

〈
1 − τk

2
tanh γH ′

k

〉
t

]
. (9)

In particular, the ‘effective’ activity of the kth neuron, which reflects the activity of only a
living one,

sk(t) ≡
〈

1 − τk

2
σk

〉
t

≡
∑
τ ,τ ′

∑
σ,σ′

1 − τk

2
σkP (τ , σ, t; τ ′, t − tD, σ′, t − td), (10)

can be determined from
d

dt
sk = −

∑
τ ,τ ′

∑
σ,σ′

σk

1 − τk

2

[
wτ

k (τk; τ ′)P (τ , σ, t; τ ′, t − tD, σ′, t − td)

−wτ
k (−τk; τ ′)P (Fkτ , σ, t; τ ′, t − tD, σ′, t − td)

+ wσ
k (σk; σ′)P (τ , σ, t; τ ′, t − tD, σ′, t − td)

−wσ
k (−σk; σ′)P (τ , Fkσ, t; τ ′, t − tD, σ′, t − td)

]
= 〈

τkσkw
τ
k (τk; τ )

〉
t
− 〈

(1 − τk)σkw
σ
k (τk; τ )

〉
t
. (11)

Evaluation of the average
〈
τkσkw

τ
k (τk; τ )

〉
t

and
〈
(1 − τk)σkw

σ
k (τk; τ )

〉
t

leads to

d

dt
sk = − 1

2tR

[
sk +

〈
1 − τk

2
σk tanh γH ′

k

〉
t

]
+

1

tr

[(
1

2
− a

)
1 − mk

2
−

(
1

2
+ a

)
sk

+
1

2

〈
1 − τk

2
tanh βE′

k

〉
t

− 1

2

〈
1 − τk

2
σk tanh βE′

k

〉
t

]
. (12)

We now consider the Hebb-type synaptic couplings

Jij =
{
N−1 ∑p

µ=1 ξ
µ

i ξ
µ

j , i �= j,

0, i = j ,
(13)

which corresponds to the situation that p patterns
{
ξ

µ

i

}
(µ = 1, 2, . . . , p) are learned. Since

this assignment implies that Jij is of infinite range, the mean-field approximation is expected
to be correct. One may then replace E′

k in equation (12) by its average 〈E′
k〉 = ∑

µ ξ
µ

k qµ

with the ‘order parameter’ qµ ≡ N−1 ∑
j ξ

µ

j sj describing the overlap between the network
state and the memory. Further, in the case of the simplest global load sharing, we may
also replace the local field H ′

k by its average 〈H ′
k〉 = f − (hk/2)[1 − m(t − tD)] with

4
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m(t − tD) ≡ N−1 ∑
k mk(t − tD). Defining xk ≡ (1−mk)/2 and the average number of intact

neurons x̄ ≡ N−1 ∑
k xk = (1 − m̄)/2, we have

d

dt
xk(t) = − 1

2tR
[xk(t) + xk(t) tanh γ [f − hkx̄(t − tD)]] . (14)

Equation (12) then reads

d

dt
sk = − 1

2tR
[sk + sk tanh γ [f − hkx̄(t − tD)]] +

1

tr

[(
1

2
− a

)
xk −

(
1

2
+ a

)
sk

+
1

2
xk tanh βξk · q(t − td) − 1

2
sk tanh βξk · q(t − td)

]
, (15)

where the vector notation ξk · q ≡ ∑
µ ξ

µ

k qµ has been introduced for simplicity.
Multiplying equation (15) by N−1ξk and summing over k, we obtain the equation for the

order parameter:

d

dt
q = − 1

2tR

[
q +

1

N

∑
k

ξksk tanh γ [f − hkx̄(t − tD)]

]

+
1

tr

[
−

(
1

2
+ a

)
q +

1

2N

∑
k

ξkxk[1 − 2a + tanh βξk · q(t − td)]

− 1

2N

∑
k

ξksk tanh βξk · q(t − td)

]
. (16)

Thus, the time evolution of the system is described by three coupled retarded differential
equations (14)–(16).

It is obvious that equation (16) has a trivial solution q = 0 together with xk = 0,
which corresponds to the disordered state with no memory. We now examine the stationary
solutions of the system, which are obtained by setting the time derivatives equal to zero. From
equation (14), one finds xk = 0 or

tanh γ [f − hkx̄(t − tD)] = −1, (17)

which leads to the average fraction of living neurons in the noiseless limit (γ −1 = 0):

x̄ =
∫

dh g(h)x =
∫

dh θ(hx̄ − f )g(h), (18)

with g(h) being the distribution function of the tolerance {hk}. At γ −1 �= 0, we have xk = 0,
giving x̄ = 0 as the only possible solution. Note that equation (17) implies that the terms
containing tR in equations (14)–(16) vanish. Solving sk in terms of xk in equation (15) and
substituting into equation (16), we obtain

q = 4a

1 + 2a

〈〈
xξ tanh βξ · q

1 + 2a + tanh βξ · q

〉〉
, (19)

where 〈〈· · ·〉〉 stands for the average taken with respect to the distribution of
{
ξ

µ

k

}
and {hk}.

In deriving equation (19), we have replaced the average over the neurons by the average over
the distributions of memories and of tolerances: N−1 ∑

k f (ξk, xk) = 〈〈f (ξ, x)〉〉. This self-
averaging property should be valid for N → ∞ and p fixed if the memories are essentially
random.

5
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a
0.0 0.5 1.0 1.5 2.0

T

0.0

0.2

0.4

0.6

T2

T1

disordered

ordered

mixed

Figure 1. Phase diagram for the Mattis state, which shows the disordered state, ordered state and
mixed state, depending on the temperature T and the parameter a, and the ratio of the refractory
period to the duration of the action potential. Solid lines are obtained from equation (21) while
symbols are from equation (15) with x̄ = 1, both of which represent the phase boundaries.

3. Behavior in the absence of stress

In this work, we focus on the Mattis-state solution of the form q = (q, 0, . . . , 0), which is
fully correlated with just one of the quenched memories. For simplicity, ξ

µ

i may be taken to
be quenched random variables, assuming +1 and −1 with equal probabilities:

P(ξ) =
∏
µ

∏
k

p
(
ξ

µ

k

)
,

p(ξµ) = 1

2
δ(ξµ − 1) +

1

2
δ(ξµ + 1).

(20)

There are 2p equivalent solutions for a Mattis state, and for such solutions it
is straightforward to take the average in equation (19) over the distribution given by
equation (20). The average over {hk} replaces x by its stationary value x̄. Equation (19)
for the ideal Mattis state then reduces to the form

q = x̄
4a tanh βq

(1 + 2a)2 − tanh2 βq
≡ g(q), (21)

which may be solved numerically to obtain the order parameter as a function of other
parameters. For comparison, we reproduce the phase diagram for the system of x̄ = 1
[8], plotted as solid lines in figure 1. The system is shown to undergo a transition from the
disordered state (q = 0) to the ordered one with finite q as T is lowered below the transition
temperature. When the ratio a is larger than the critical value ac ≡ (

√
3 − 1)/2, the transition

is continuous at transition temperature T2. Below ac, there appears another phase between T2

and another temperature T1 (>T2), in which the ordered state and the disordered state coexist
depending on the initial configuration of the system. The transition at T = T1 is discontinuous,
between the disordered state to the mixed one. As T is lowered below T2, the system becomes
ordered via the continuous transition.

We also obtain the transition temperatures by means of integrating numerically
equation (15) as follows. We consider systems of N = 4096 neurons with p memory patterns,
which are generated according to equation (20) at each run. The initial values of mk’s are also
chosen randomly (−1 � mk � 1) at each run, which, together with p patterns, comprise one
configuration. Specifically, we have used 102 to 105 different configurations for each value of

6
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T

0.0 0.1 0.2 0.3 0.4 0.5 0.6

q

0.0

0.2

0.4

0.6

0.8

1.0

a = 0.1
0.2 
1.0

Figure 2. The Mattis-state order parameter q versus the temperature T for x̄ = 1. Solid lines are
obtained from equation (21) and symbols from equation (15). Full and open circles represent the
data for a = 0.1 and 0.2, respectively, while back triangles correspond to a = 1.0.

(a, T ), and set the refractory period tr = 5, delay time td = 1 and time step �t = 0.5. These
parameter values have been varied, only to give no appreciable difference except for the time
scale. In the stationary state, the first term in the right-hand side of equation (15) vanishes and
only the second term needs to be integrated.

Raising the temperature stepwise in the increment �T = 0.01, we record at each
temperature all configurations, which may correspond to the disordered, Mattis or other
ordered state. Among ordered states of the system, only Mattis states are taken, from which
the transition temperatures are estimated. Here it is rather arduous to determine accurately
the transition temperature, for the following reason. At temperatures near T2, realization of
a Mattis state is of extremely small probability, especially as the number p of patterns is
increased. The same is true for the realization of a mixed state for a < ac at temperatures
near T1. Fortunately, the data appear largely independent on the choice of p, which allows one
to use small values of p. We thus use the values between 2 and 10, to obtain the transition
temperatures T1 and T2. Figure 1 exhibits the resulting data, represented by open (T1) and
filled (T2) circles; good agreement with the analytical results is observed.

In figure 2, we plot the order parameter q as a function of temperature T, to disclose the
nature of the phase transition. Whereas solid lines are obtained from equation (21), symbols
represent data from integrating equation (15). Full and open circles correspond to data for
a = 0.1 and 0.2, respectively, and back triangles to data for a = 1.0. When a < ac, the
data in circles show that the transition is discontinuous and the order parameter can take two
different values, thus manifesting the mixed state, at temperatures between T1 and T2. As a is
increased beyond ac, on the other hand, the transition becomes continuous, without the mixed
state (see the data for a = 1.0).

In addition, we have also performed dynamic Monte Carlo (MC) simulations of the
system, using the transition probabilities in equations (2) and (4). The results agree well with
those obtained by integrating equation (15) with x̄ = 1. Thus analytical predictions such as
the existence of the mixed state for a < ac and the nature of the transition are confirmed by
both numerical integration and simulations.

4. Effects of neuronal loss

When the stress is turned on, the fraction x̄ of intact neurons will decrease. In calculation with
the deterioration taken into account, we take the tolerance distribution g(h) to be Gaussian

7
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t
0 2000 4000 6000

q
(o

r
x

)

0.0

0.5

1.0
x
q 1

q 2

Figure 3. Evolution of the Mattis-state order parameter q with time t, obtained from Monte Carlo
simulations based on equations (2) and (4). The solid line and the dashed one correspond to two
different memory patterns; also shown is the evolution of the fraction x̄ of intact neurons (plotted
by the dotted line). The tolerance distribution is taken to be Gaussian with unit mean and variance
σ = 0.3, the stress f = 0.60. The time scale of the deterioration process is taken to be 100 times
that of the memory function process.

with unit mean and variance σ = 0.3 or 0.4, and set the relaxation time tR = 50 and the delay
time for the stress redistribution tD = 100.

Monte Carlo simulations reveal that the Mattis-state order parameter q decreases as the
deterioration goes on; finally, the system loses memory completely at some value of x̄, which
depends on the parameters of the system. As an example, figure 3 displays a typical result of the
deterioration process of the system with two patterns (p = 2) for a = 0.2 and T = 0.2 under
stress f = 0.60 turned on at time t = 500. Beginning in the disordered state (q1 = q2 = 0
at t = 0), the system rapidly evolves into the ordered state characterized by q1 �= 0, namely,
the system retrieves quickly the memory ξ 1, which is expected at T < T2. To probe such
retrieval capability in the presence of the deterioration, we erase memory by resetting q = 0
at time t = 500 and periodically thereafter (with the period of 500) while keeping the stress
turned on. It is observed that under such memory resetting, the system still evolves rapidly
into an ordered state, retrieving one pattern of memory, until the fraction x̄ of intact neurons,
decreasing from unity, reaches some threshold value. As the fraction decreases below this
value, the memory ceases to be retrieved.

It is obvious that q in general reduces as the fraction x̄ decreases or the neuronal loss
(1 − x̄) increases. This may be demonstrated through the use of equation (21), as shown by
solid lines in figure 4 for a = 0.1 and at two temperatures. Data represented by symbols
have been obtained from the integration of equation (15). Here note that the time scale of the
deterioration process is much longer than that of the memory retrieval process. The state of
the system would thus be practically quasi-stationary except during the final breakdown.

We also show the results for a = 0.5 in figure 5, where the symbols represent data
obtained from MC simulations rather than from numerical integration. In the simulations,
two configurations have been used: variance σ = 0.4 for the tolerance distribution, stress
f = 0.61, and temperature T = 0.1 and 0.3. Larger discrepancy is observed between the
analytical results (solid lines) and simulation results near the threshold region, where the
system evolves rapidly, not in a quasi-stationary state. We have also integrated numerically
equation (15), similarly to the case of figure 4, to obtain results in excellent agreement with
the analytical ones (data not shown).

8
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Figure 4. The Mattis-state order parameter q versus the neuronal loss (1 − x̄) for a = 0.1 at
temperatures T = 0.1 and 0.2. Solid lines are obtained from equation (21) and symbols represent
data from equation (15). Discontinuous changes of the order parameter indicate the presence of
first-order transitions.
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Figure 5. The Mattis-state order parameter q versus the neuronal loss (1 − x̄) for a = 0.1
at temperature T = 0.1 and 0.3. Solid lines are obtained from equation (21) while symbols
represent data from Monte Carlo simulations, similar to those used in obtaining the data in figure 2.
Second-order transitions are observed.

In figures 4 and 5, the order parameter reduces as the neuronal loss increases. Then the
system loses memory completely when the loss becomes larger than a threshold value. As the
temperature is increased, this behavior is enhanced, i.e., q decreases faster. The transition is
discontinuous for a < ac, as shown in figure 4, and continuous for a > ac as shown in figure 5,
which is similar to the transition with the temperature. When a is small, there also exists a
range of the neuronal loss in which the mixed phase appears; this is manifested by the presence
of two different values of q in figure 4. The system with a small ratio of the refractory period to
the action potential duration may thus be either successful or failing in retrieving the memory,
even in the simplest mean-field-like theory. In real systems, these results may be related to,
for example, dementia or Alzheimer’s disease [10], in which the system loses memory as the
neuronal loss proceeds. It is thus of interest to see whether the refractory period or the action
potential duration alters in the neuronal cells of a patient suffering from the disease.
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5. Summary

We study, both theoretically and numerically, the effects of neuronal loss on the phase transition
of the neural network. In the absence of loss, both numerical integration and simulations give
results, which agree well with those obtained analytically. When the ratio a of the refractory
period to the action potential duration is smaller than the critical value, the transition is
discontinuous, and there exists a mixed state at intermediate temperatures. As a grows beyond
the critical value, the transition turns into a continuous one, without a mixed state.

When the neuronal loss is introduced, the Mattis-state order parameter in general reduces
with the loss. Above some threshold value, the system loses memory completely, as expected.
There occurs either a first- or a second-order transition as the neuronal loss increases, depending
on the parameter a; this corresponds to the memory retrieved abruptly or gradually.
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